Controllable lasing performance in solution-processed organic-inorganic hybrid perovskites.

نویسندگان

  • Tsung Sheng Kao
  • Yu-Hsun Chou
  • Kuo-Bin Hong
  • Jiong-Fu Huang
  • Chun-Hsien Chou
  • Hao-Chung Kuo
  • Fang-Chung Chen
  • Tien-Chang Lu
چکیده

Solution-processed organic-inorganic perovskites are fascinating due to their remarkable photo-conversion efficiency and great potential in the cost-effective, versatile and large-scale manufacturing of optoelectronic devices. In this paper, we demonstrate that the perovskite nanocrystal sizes can be simply controlled by manipulating the precursor solution concentrations in a two-step sequential deposition process, thus achieving the feasible tunability of excitonic properties and lasing performance in hybrid metal-halide perovskites. The lasing threshold is at around 230 μJ cm-2 in this solution-processed organic-inorganic lead-halide material, which is comparable to the colloidal quantum dot lasers. The efficient stimulated emission originates from the multiple random scattering provided by the micro-meter scale rugged morphology and polycrystalline grain boundaries. Thus the excitonic properties in perovskites exhibit high correlation with the formed morphology of the perovskite nanocrystals. Compared to the conventional lasers normally serving as a coherent light source, the perovskite random lasers are promising in making low-cost thin-film lasing devices for flexible and speckle-free imaging applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low-temperature solution-processed wavelength-tunable perovskites for lasing.

Low-temperature solution-processed materials that show optical gain and can be embedded into a wide range of cavity resonators are attractive for the realization of on-chip coherent light sources. Organic semiconductors and colloidal quantum dots are considered the main candidates for this application. However, stumbling blocks in organic lasing include intrinsic losses from bimolecular annihil...

متن کامل

All-optical THz wave switching based on CH3NH3PbI3 perovskites

Hybrid structures of silicon with organic-inorganic perovskites are proposed for optically controllable switching of terahertz (THz) waves over a broad spectral range from 0.2 to 2THz. A 532-nm external laser was utilized to generate photoexcited free carriers at the devices and consequentially to control the terahertz amplitude modulation, obtaining a depth of up to 68% at a laser irradiance o...

متن کامل

Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells.

To improve the performance of the polycrystalline thin film devices, it requires a delicate control of its grain structures. As one of the most promising candidates among current thin film photovoltaic techniques, the organic/inorganic hybrid perovskites generally inherit polycrystalline nature and exhibit compositional/structural dependence in regard to their optoelectronic properties. Here, w...

متن کامل

Organic-inorganic perovskites: Lower threshold for nanowire lasers.

Semiconductor nanowires are excellent candidates for the realization of miniaturized lasers; in fact, their faceted structure naturally behaves as an optical cavity in which light can resonate, and the gain medium they are made of provides the optical amplification required to trigger lasing action1. Bottom-up fabrication approaches have unlocked the synthesis of nanowires based on a broad fami...

متن کامل

Simultaneous band-gap narrowing and carrier-lifetime prolongation of organic-inorganic trihalide perovskites.

The organic-inorganic hybrid lead trihalide perovskites have been emerging as the most attractive photovoltaic materials. As regulated by Shockley-Queisser theory, a formidable materials science challenge for improvement to the next level requires further band-gap narrowing for broader absorption in solar spectrum, while retaining or even synergistically prolonging the carrier lifetime, a criti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 8 43  شماره 

صفحات  -

تاریخ انتشار 2016